This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem axc7e

Description: Abbreviated version of axc7 using the existential quantifier. Corresponds to the dual of Axiom (B) of modal logic. (Contributed by NM, 5-Aug-1993) (Proof shortened by Wolf Lammen, 8-Jul-2022)

Ref Expression
Assertion axc7e x x φ φ

Proof

Step Hyp Ref Expression
1 hbe1a x x φ x φ
2 1 19.21bi x x φ φ