This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: An atom covers zero. ( atcv0 analog.) (Contributed by NM, 4-Nov-2011)
|
|
Ref |
Expression |
|
Hypotheses |
atomcvr0.z |
|
|
|
atomcvr0.c |
|
|
|
atomcvr0.a |
|
|
Assertion |
atcvr0 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atomcvr0.z |
|
| 2 |
|
atomcvr0.c |
|
| 3 |
|
atomcvr0.a |
|
| 4 |
|
eqid |
|
| 5 |
4 1 2 3
|
isat |
|
| 6 |
5
|
simplbda |
|