This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Metric spaces
Topology on the reals
addcn
Metamath Proof Explorer
Description: Complex number addition is a continuous function. Part of Proposition
14-4.16 of Gleason p. 243. (Contributed by NM , 30-Jul-2007) (Proof
shortened by Mario Carneiro , 5-May-2014)
Ref
Expression
Hypothesis
addcn.j
⊢ J = TopOpen ⁡ ℂ fld
Assertion
addcn
⊢ + ∈ J × t J Cn J
Proof
Step
Hyp
Ref
Expression
1
addcn.j
⊢ J = TopOpen ⁡ ℂ fld
2
ax-addf
⊢ + : ℂ × ℂ ⟶ ℂ
3
addcn2
⊢ a ∈ ℝ + ∧ b ∈ ℂ ∧ c ∈ ℂ → ∃ y ∈ ℝ + ∃ z ∈ ℝ + ∀ u ∈ ℂ ∀ v ∈ ℂ u − b < y ∧ v − c < z → u + v - b + c < a
4
1 2 3
addcnlem
⊢ + ∈ J × t J Cn J