This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Metric spaces
Topology on the reals
subcn
Metamath Proof Explorer
Description: Complex number subtraction is a continuous function. Part of
Proposition 14-4.16 of Gleason p. 243. (Contributed by NM , 4-Aug-2007) (Proof shortened by Mario Carneiro , 5-May-2014)
Ref
Expression
Hypothesis
addcn.j
⊢ J = TopOpen ⁡ ℂ fld
Assertion
subcn
⊢ − ∈ J × t J Cn J
Proof
Step
Hyp
Ref
Expression
1
addcn.j
⊢ J = TopOpen ⁡ ℂ fld
2
subf
⊢ − : ℂ × ℂ ⟶ ℂ
3
subcn2
⊢ a ∈ ℝ + ∧ b ∈ ℂ ∧ c ∈ ℂ → ∃ y ∈ ℝ + ∃ z ∈ ℝ + ∀ u ∈ ℂ ∀ v ∈ ℂ u − b < y ∧ v − c < z → u - v - b − c < a
4
1 2 3
addcnlem
⊢ − ∈ J × t J Cn J