This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Logical conjunction
a2and
Metamath Proof Explorer
Description: Deduction distributing a conjunction as embedded antecedent.
(Contributed by AV , 25-Oct-2019) (Proof shortened by Wolf Lammen , 19-Jan-2020)
Ref
Expression
Hypotheses
a2and.1
⊢ φ → ψ ∧ ρ → τ → θ
a2and.2
⊢ φ → ψ ∧ ρ → χ
Assertion
a2and
⊢ φ → ψ ∧ χ → τ → ψ ∧ ρ → θ
Proof
Step
Hyp
Ref
Expression
1
a2and.1
⊢ φ → ψ ∧ ρ → τ → θ
2
a2and.2
⊢ φ → ψ ∧ ρ → χ
3
2
expd
⊢ φ → ψ → ρ → χ
4
3
imdistand
⊢ φ → ψ ∧ ρ → ψ ∧ χ
5
imim1
⊢ ψ ∧ χ → τ → τ → θ → ψ ∧ χ → θ
6
5
com3l
⊢ τ → θ → ψ ∧ χ → ψ ∧ χ → τ → θ
7
1 4 6
syl6c
⊢ φ → ψ ∧ ρ → ψ ∧ χ → τ → θ
8
7
com23
⊢ φ → ψ ∧ χ → τ → ψ ∧ ρ → θ