This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction distributing a conjunction as embedded antecedent. (Contributed by AV, 25-Oct-2019) (Proof shortened by Wolf Lammen, 19-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | a2and.1 | |- ( ph -> ( ( ps /\ rh ) -> ( ta -> th ) ) ) |
|
| a2and.2 | |- ( ph -> ( ( ps /\ rh ) -> ch ) ) |
||
| Assertion | a2and | |- ( ph -> ( ( ( ps /\ ch ) -> ta ) -> ( ( ps /\ rh ) -> th ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a2and.1 | |- ( ph -> ( ( ps /\ rh ) -> ( ta -> th ) ) ) |
|
| 2 | a2and.2 | |- ( ph -> ( ( ps /\ rh ) -> ch ) ) |
|
| 3 | 2 | expd | |- ( ph -> ( ps -> ( rh -> ch ) ) ) |
| 4 | 3 | imdistand | |- ( ph -> ( ( ps /\ rh ) -> ( ps /\ ch ) ) ) |
| 5 | imim1 | |- ( ( ( ps /\ ch ) -> ta ) -> ( ( ta -> th ) -> ( ( ps /\ ch ) -> th ) ) ) |
|
| 6 | 5 | com3l | |- ( ( ta -> th ) -> ( ( ps /\ ch ) -> ( ( ( ps /\ ch ) -> ta ) -> th ) ) ) |
| 7 | 1 4 6 | syl6c | |- ( ph -> ( ( ps /\ rh ) -> ( ( ( ps /\ ch ) -> ta ) -> th ) ) ) |
| 8 | 7 | com23 | |- ( ph -> ( ( ( ps /\ ch ) -> ta ) -> ( ( ps /\ rh ) -> th ) ) ) |