This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Substitution expressed in terms of two quantifications over singletons.
(Contributed by AV, 22-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
ralsng.1 |
|
|
|
2ralsng.1 |
|
|
Assertion |
2ralsng |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ralsng.1 |
|
| 2 |
|
2ralsng.1 |
|
| 3 |
1
|
ralbidv |
|
| 4 |
3
|
ralsng |
|
| 5 |
2
|
ralsng |
|
| 6 |
4 5
|
sylan9bb |
|