This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
2ralbiim
Metamath Proof Explorer
Description: Split a biconditional and distribute two restricted universal quantifiers,
analogous to 2albiim and ralbiim . (Contributed by Alexander van der
Vekens , 2-Jul-2017)
Ref
Expression
Assertion
2ralbiim
⊢ ∀ x ∈ A ∀ y ∈ B φ ↔ ψ ↔ ∀ x ∈ A ∀ y ∈ B φ → ψ ∧ ∀ x ∈ A ∀ y ∈ B ψ → φ
Proof
Step
Hyp
Ref
Expression
1
ralbiim
⊢ ∀ y ∈ B φ ↔ ψ ↔ ∀ y ∈ B φ → ψ ∧ ∀ y ∈ B ψ → φ
2
1
ralbii
⊢ ∀ x ∈ A ∀ y ∈ B φ ↔ ψ ↔ ∀ x ∈ A ∀ y ∈ B φ → ψ ∧ ∀ y ∈ B ψ → φ
3
r19.26
⊢ ∀ x ∈ A ∀ y ∈ B φ → ψ ∧ ∀ y ∈ B ψ → φ ↔ ∀ x ∈ A ∀ y ∈ B φ → ψ ∧ ∀ x ∈ A ∀ y ∈ B ψ → φ
4
2 3
bitri
⊢ ∀ x ∈ A ∀ y ∈ B φ ↔ ψ ↔ ∀ x ∈ A ∀ y ∈ B φ → ψ ∧ ∀ x ∈ A ∀ y ∈ B ψ → φ