This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Tarski's system S2 (1 rule, 6 schemes)
Axiom scheme ax-4 (Quantified Implication)
19.38b
Metamath Proof Explorer
Description: Under a nonfreeness hypothesis, the implication 19.38 can be
strengthened to an equivalence. See also 19.38a . (Contributed by BJ , 3-Nov-2021) (Proof shortened by Wolf Lammen , 9-Jul-2022)
Ref
Expression
Assertion
19.38b
⊢ Ⅎ x ψ → ∃ x φ → ∀ x ψ ↔ ∀ x φ → ψ
Proof
Step
Hyp
Ref
Expression
1
19.38
⊢ ∃ x φ → ∀ x ψ → ∀ x φ → ψ
2
exim
⊢ ∀ x φ → ψ → ∃ x φ → ∃ x ψ
3
id
⊢ Ⅎ x ψ → Ⅎ x ψ
4
3
nfrd
⊢ Ⅎ x ψ → ∃ x ψ → ∀ x ψ
5
2 4
syl9r
⊢ Ⅎ x ψ → ∀ x φ → ψ → ∃ x φ → ∀ x ψ
6
1 5
impbid2
⊢ Ⅎ x ψ → ∃ x φ → ∀ x ψ ↔ ∀ x φ → ψ