This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Tarski's system S2 (1 rule, 6 schemes)
Axiom scheme ax-4 (Quantified Implication)
19.38a
Metamath Proof Explorer
Description: Under a nonfreeness hypothesis, the implication 19.38 can be
strengthened to an equivalence. See also 19.38b . (Contributed by BJ , 3-Nov-2021) (Proof shortened by Wolf Lammen , 9-Jul-2022)
Ref
Expression
Assertion
19.38a
⊢ Ⅎ x φ → ∃ x φ → ∀ x ψ ↔ ∀ x φ → ψ
Proof
Step
Hyp
Ref
Expression
1
19.38
⊢ ∃ x φ → ∀ x ψ → ∀ x φ → ψ
2
id
⊢ Ⅎ x φ → Ⅎ x φ
3
2
nfrd
⊢ Ⅎ x φ → ∃ x φ → ∀ x φ
4
alim
⊢ ∀ x φ → ψ → ∀ x φ → ∀ x ψ
5
3 4
syl9
⊢ Ⅎ x φ → ∀ x φ → ψ → ∃ x φ → ∀ x ψ
6
1 5
impbid2
⊢ Ⅎ x φ → ∃ x φ → ∀ x ψ ↔ ∀ x φ → ψ