This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015) (Revised by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrinf0 | |- inf ( (/) , RR* , < ) = +oo |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso | |- < Or RR* |
|
| 2 | 1 | a1i | |- ( T. -> < Or RR* ) |
| 3 | pnfxr | |- +oo e. RR* |
|
| 4 | 3 | a1i | |- ( T. -> +oo e. RR* ) |
| 5 | noel | |- -. y e. (/) |
|
| 6 | 5 | pm2.21i | |- ( y e. (/) -> -. y < +oo ) |
| 7 | 6 | adantl | |- ( ( T. /\ y e. (/) ) -> -. y < +oo ) |
| 8 | pnfnlt | |- ( y e. RR* -> -. +oo < y ) |
|
| 9 | 8 | pm2.21d | |- ( y e. RR* -> ( +oo < y -> E. z e. (/) z < y ) ) |
| 10 | 9 | imp | |- ( ( y e. RR* /\ +oo < y ) -> E. z e. (/) z < y ) |
| 11 | 10 | adantl | |- ( ( T. /\ ( y e. RR* /\ +oo < y ) ) -> E. z e. (/) z < y ) |
| 12 | 2 4 7 11 | eqinfd | |- ( T. -> inf ( (/) , RR* , < ) = +oo ) |
| 13 | 12 | mptru | |- inf ( (/) , RR* , < ) = +oo |