This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a binary product on structures. (Contributed by Mario Carneiro, 14-Aug-2015) (Revised by Jim Kingdon, 25-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-xps | |- Xs. = ( r e. _V , s e. _V |-> ( `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cxps | |- Xs. |
|
| 1 | vr | |- r |
|
| 2 | cvv | |- _V |
|
| 3 | vs | |- s |
|
| 4 | vx | |- x |
|
| 5 | cbs | |- Base |
|
| 6 | 1 | cv | |- r |
| 7 | 6 5 | cfv | |- ( Base ` r ) |
| 8 | vy | |- y |
|
| 9 | 3 | cv | |- s |
| 10 | 9 5 | cfv | |- ( Base ` s ) |
| 11 | c0 | |- (/) |
|
| 12 | 4 | cv | |- x |
| 13 | 11 12 | cop | |- <. (/) , x >. |
| 14 | c1o | |- 1o |
|
| 15 | 8 | cv | |- y |
| 16 | 14 15 | cop | |- <. 1o , y >. |
| 17 | 13 16 | cpr | |- { <. (/) , x >. , <. 1o , y >. } |
| 18 | 4 8 7 10 17 | cmpo | |- ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 19 | 18 | ccnv | |- `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 20 | cimas | |- "s |
|
| 21 | csca | |- Scalar |
|
| 22 | 6 21 | cfv | |- ( Scalar ` r ) |
| 23 | cprds | |- Xs_ |
|
| 24 | 11 6 | cop | |- <. (/) , r >. |
| 25 | 14 9 | cop | |- <. 1o , s >. |
| 26 | 24 25 | cpr | |- { <. (/) , r >. , <. 1o , s >. } |
| 27 | 22 26 23 | co | |- ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) |
| 28 | 19 27 20 | co | |- ( `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) ) |
| 29 | 1 3 2 2 28 | cmpo | |- ( r e. _V , s e. _V |-> ( `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) ) ) |
| 30 | 0 29 | wceq | |- Xs. = ( r e. _V , s e. _V |-> ( `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) ) ) |