This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cartesian product of an unordered pair and a singleton. (Contributed by AV, 20-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpprsng | |- ( ( A e. V /\ B e. W /\ C e. U ) -> ( { A , B } X. { C } ) = { <. A , C >. , <. B , C >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr | |- { A , B } = ( { A } u. { B } ) |
|
| 2 | 1 | xpeq1i | |- ( { A , B } X. { C } ) = ( ( { A } u. { B } ) X. { C } ) |
| 3 | xpsng | |- ( ( A e. V /\ C e. U ) -> ( { A } X. { C } ) = { <. A , C >. } ) |
|
| 4 | 3 | 3adant2 | |- ( ( A e. V /\ B e. W /\ C e. U ) -> ( { A } X. { C } ) = { <. A , C >. } ) |
| 5 | xpsng | |- ( ( B e. W /\ C e. U ) -> ( { B } X. { C } ) = { <. B , C >. } ) |
|
| 6 | 5 | 3adant1 | |- ( ( A e. V /\ B e. W /\ C e. U ) -> ( { B } X. { C } ) = { <. B , C >. } ) |
| 7 | 4 6 | uneq12d | |- ( ( A e. V /\ B e. W /\ C e. U ) -> ( ( { A } X. { C } ) u. ( { B } X. { C } ) ) = ( { <. A , C >. } u. { <. B , C >. } ) ) |
| 8 | xpundir | |- ( ( { A } u. { B } ) X. { C } ) = ( ( { A } X. { C } ) u. ( { B } X. { C } ) ) |
|
| 9 | df-pr | |- { <. A , C >. , <. B , C >. } = ( { <. A , C >. } u. { <. B , C >. } ) |
|
| 10 | 7 8 9 | 3eqtr4g | |- ( ( A e. V /\ B e. W /\ C e. U ) -> ( ( { A } u. { B } ) X. { C } ) = { <. A , C >. , <. B , C >. } ) |
| 11 | 2 10 | eqtrid | |- ( ( A e. V /\ B e. W /\ C e. U ) -> ( { A , B } X. { C } ) = { <. A , C >. , <. B , C >. } ) |