This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express exclusive disjunction ( df-xor ). Theorem *5.22 of WhiteheadRussell p. 124. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 22-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xor | |- ( -. ( ph <-> ps ) <-> ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman | |- ( ( ph -> ps ) <-> -. ( ph /\ -. ps ) ) |
|
| 2 | iman | |- ( ( ps -> ph ) <-> -. ( ps /\ -. ph ) ) |
|
| 3 | 1 2 | anbi12i | |- ( ( ( ph -> ps ) /\ ( ps -> ph ) ) <-> ( -. ( ph /\ -. ps ) /\ -. ( ps /\ -. ph ) ) ) |
| 4 | dfbi2 | |- ( ( ph <-> ps ) <-> ( ( ph -> ps ) /\ ( ps -> ph ) ) ) |
|
| 5 | ioran | |- ( -. ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) <-> ( -. ( ph /\ -. ps ) /\ -. ( ps /\ -. ph ) ) ) |
|
| 6 | 3 4 5 | 3bitr4ri | |- ( -. ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) <-> ( ph <-> ps ) ) |
| 7 | 6 | con1bii | |- ( -. ( ph <-> ps ) <-> ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) ) |