This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wlkvtxeledg : Two adjacent (not necessarily different) vertices A and B in a walk are incident with an edge E . (Contributed by AV, 4-Apr-2021) (Revised by AV, 5-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifpsnprss | |- ( if- ( A = B , E = { A } , { A , B } C_ E ) -> { A , B } C_ E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd | |- ( ( A = B /\ E = { A } ) -> { A } C_ { A } ) |
|
| 2 | preq2 | |- ( B = A -> { A , B } = { A , A } ) |
|
| 3 | dfsn2 | |- { A } = { A , A } |
|
| 4 | 2 3 | eqtr4di | |- ( B = A -> { A , B } = { A } ) |
| 5 | 4 | eqcoms | |- ( A = B -> { A , B } = { A } ) |
| 6 | 5 | adantr | |- ( ( A = B /\ E = { A } ) -> { A , B } = { A } ) |
| 7 | simpr | |- ( ( A = B /\ E = { A } ) -> E = { A } ) |
|
| 8 | 1 6 7 | 3sstr4d | |- ( ( A = B /\ E = { A } ) -> { A , B } C_ E ) |
| 9 | 8 | 1fpid3 | |- ( if- ( A = B , E = { A } , { A , B } C_ E ) -> { A , B } C_ E ) |