This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce weak dominance from an implicit onto function. (Contributed by Stefan O'Rear, 13-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wdomd.b | |- ( ph -> B e. W ) |
|
| wdomd.o | |- ( ( ph /\ x e. A ) -> E. y e. B x = X ) |
||
| Assertion | wdomd | |- ( ph -> A ~<_* B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wdomd.b | |- ( ph -> B e. W ) |
|
| 2 | wdomd.o | |- ( ( ph /\ x e. A ) -> E. y e. B x = X ) |
|
| 3 | abrexexg | |- ( B e. W -> { x | E. y e. B x = X } e. _V ) |
|
| 4 | 1 3 | syl | |- ( ph -> { x | E. y e. B x = X } e. _V ) |
| 5 | 2 | ex | |- ( ph -> ( x e. A -> E. y e. B x = X ) ) |
| 6 | 5 | alrimiv | |- ( ph -> A. x ( x e. A -> E. y e. B x = X ) ) |
| 7 | ssab | |- ( A C_ { x | E. y e. B x = X } <-> A. x ( x e. A -> E. y e. B x = X ) ) |
|
| 8 | 6 7 | sylibr | |- ( ph -> A C_ { x | E. y e. B x = X } ) |
| 9 | 4 8 | ssexd | |- ( ph -> A e. _V ) |
| 10 | 9 1 2 | wdom2d | |- ( ph -> A ~<_* B ) |