This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equality connective between relations. (Contributed by Peter Mazsa, 25-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqrelf.1 | |- F/_ x A |
|
| eqrelf.2 | |- F/_ x B |
||
| eqrelf.3 | |- F/_ y A |
||
| eqrelf.4 | |- F/_ y B |
||
| Assertion | eqrelf | |- ( ( Rel A /\ Rel B ) -> ( A = B <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrelf.1 | |- F/_ x A |
|
| 2 | eqrelf.2 | |- F/_ x B |
|
| 3 | eqrelf.3 | |- F/_ y A |
|
| 4 | eqrelf.4 | |- F/_ y B |
|
| 5 | eqrel | |- ( ( Rel A /\ Rel B ) -> ( A = B <-> A. u A. v ( <. u , v >. e. A <-> <. u , v >. e. B ) ) ) |
|
| 6 | nfv | |- F/ u ( <. x , y >. e. A <-> <. x , y >. e. B ) |
|
| 7 | nfv | |- F/ v ( <. x , y >. e. A <-> <. x , y >. e. B ) |
|
| 8 | 1 | nfel2 | |- F/ x <. u , v >. e. A |
| 9 | 2 | nfel2 | |- F/ x <. u , v >. e. B |
| 10 | 8 9 | nfbi | |- F/ x ( <. u , v >. e. A <-> <. u , v >. e. B ) |
| 11 | 3 | nfel2 | |- F/ y <. u , v >. e. A |
| 12 | 4 | nfel2 | |- F/ y <. u , v >. e. B |
| 13 | 11 12 | nfbi | |- F/ y ( <. u , v >. e. A <-> <. u , v >. e. B ) |
| 14 | opeq12 | |- ( ( x = u /\ y = v ) -> <. x , y >. = <. u , v >. ) |
|
| 15 | 14 | eleq1d | |- ( ( x = u /\ y = v ) -> ( <. x , y >. e. A <-> <. u , v >. e. A ) ) |
| 16 | 14 | eleq1d | |- ( ( x = u /\ y = v ) -> ( <. x , y >. e. B <-> <. u , v >. e. B ) ) |
| 17 | 15 16 | bibi12d | |- ( ( x = u /\ y = v ) -> ( ( <. x , y >. e. A <-> <. x , y >. e. B ) <-> ( <. u , v >. e. A <-> <. u , v >. e. B ) ) ) |
| 18 | 6 7 10 13 17 | cbval2v | |- ( A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. B ) <-> A. u A. v ( <. u , v >. e. A <-> <. u , v >. e. B ) ) |
| 19 | 5 18 | bitr4di | |- ( ( Rel A /\ Rel B ) -> ( A = B <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. B ) ) ) |