This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple graph with (at least) two different vertices and one edge. If the two vertices were not different, the edge would be a loop. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr1eop | |- ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) -> ( B =/= C -> <. V , { <. A , { B , C } >. } >. e. USGraph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` <. V , { <. A , { B , C } >. } >. ) = ( Vtx ` <. V , { <. A , { B , C } >. } >. ) |
|
| 2 | simpllr | |- ( ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) /\ B =/= C ) -> A e. X ) |
|
| 3 | simplrl | |- ( ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) /\ B =/= C ) -> B e. V ) |
|
| 4 | simpl | |- ( ( V e. W /\ A e. X ) -> V e. W ) |
|
| 5 | 4 | adantr | |- ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) -> V e. W ) |
| 6 | snex | |- { <. A , { B , C } >. } e. _V |
|
| 7 | 6 | a1i | |- ( B =/= C -> { <. A , { B , C } >. } e. _V ) |
| 8 | opvtxfv | |- ( ( V e. W /\ { <. A , { B , C } >. } e. _V ) -> ( Vtx ` <. V , { <. A , { B , C } >. } >. ) = V ) |
|
| 9 | 5 7 8 | syl2an | |- ( ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) /\ B =/= C ) -> ( Vtx ` <. V , { <. A , { B , C } >. } >. ) = V ) |
| 10 | 3 9 | eleqtrrd | |- ( ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) /\ B =/= C ) -> B e. ( Vtx ` <. V , { <. A , { B , C } >. } >. ) ) |
| 11 | simprr | |- ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) -> C e. V ) |
|
| 12 | 6 | a1i | |- ( ( B e. V /\ C e. V ) -> { <. A , { B , C } >. } e. _V ) |
| 13 | 4 12 8 | syl2an | |- ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) -> ( Vtx ` <. V , { <. A , { B , C } >. } >. ) = V ) |
| 14 | 11 13 | eleqtrrd | |- ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) -> C e. ( Vtx ` <. V , { <. A , { B , C } >. } >. ) ) |
| 15 | 14 | adantr | |- ( ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) /\ B =/= C ) -> C e. ( Vtx ` <. V , { <. A , { B , C } >. } >. ) ) |
| 16 | opiedgfv | |- ( ( V e. W /\ { <. A , { B , C } >. } e. _V ) -> ( iEdg ` <. V , { <. A , { B , C } >. } >. ) = { <. A , { B , C } >. } ) |
|
| 17 | 5 7 16 | syl2an | |- ( ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) /\ B =/= C ) -> ( iEdg ` <. V , { <. A , { B , C } >. } >. ) = { <. A , { B , C } >. } ) |
| 18 | simpr | |- ( ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) /\ B =/= C ) -> B =/= C ) |
|
| 19 | 1 2 10 15 17 18 | usgr1e | |- ( ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) /\ B =/= C ) -> <. V , { <. A , { B , C } >. } >. e. USGraph ) |
| 20 | 19 | ex | |- ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) -> ( B =/= C -> <. V , { <. A , { B , C } >. } >. e. USGraph ) ) |