This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a pseudograph, all edges of a walk consisting of different vertices are different. Notice that this theorem would not hold for arbitrary hypergraphs, see the counterexample given in the comment of upgrspthswlk . (Contributed by AV, 17-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | upgrwlkdvde | |- ( ( G e. UPGraph /\ F ( Walks ` G ) P /\ Fun `' P ) -> Fun `' F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 3 | 1 2 | upgriswlk | |- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 4 | df-f1 | |- ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) <-> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' P ) ) |
|
| 5 | 4 | simplbi2 | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( Fun `' P -> P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) ) |
| 6 | 5 | 3ad2ant2 | |- ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( Fun `' P -> P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) ) |
| 7 | 6 | impcom | |- ( ( Fun `' P /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) -> P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) |
| 8 | simpr1 | |- ( ( Fun `' P /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) -> F e. Word dom ( iEdg ` G ) ) |
|
| 9 | 7 8 | jca | |- ( ( Fun `' P /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) -> ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) /\ F e. Word dom ( iEdg ` G ) ) ) |
| 10 | simpr3 | |- ( ( Fun `' P /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
|
| 11 | upgrwlkdvdelem | |- ( ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) /\ F e. Word dom ( iEdg ` G ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> Fun `' F ) ) |
|
| 12 | 9 10 11 | sylc | |- ( ( Fun `' P /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) -> Fun `' F ) |
| 13 | 12 | expcom | |- ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( Fun `' P -> Fun `' F ) ) |
| 14 | 3 13 | biimtrdi | |- ( G e. UPGraph -> ( F ( Walks ` G ) P -> ( Fun `' P -> Fun `' F ) ) ) |
| 15 | 14 | 3imp | |- ( ( G e. UPGraph /\ F ( Walks ` G ) P /\ Fun `' P ) -> Fun `' F ) |