This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The edge function of an undirected pseudograph is a function into unordered pairs of vertices. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by AV, 10-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isupgr.v | |- V = ( Vtx ` G ) |
|
| isupgr.e | |- E = ( iEdg ` G ) |
||
| Assertion | upgrfn | |- ( ( G e. UPGraph /\ E Fn A ) -> E : A --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isupgr.v | |- V = ( Vtx ` G ) |
|
| 2 | isupgr.e | |- E = ( iEdg ` G ) |
|
| 3 | 1 2 | upgrf | |- ( G e. UPGraph -> E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 4 | fndm | |- ( E Fn A -> dom E = A ) |
|
| 5 | 4 | feq2d | |- ( E Fn A -> ( E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } <-> E : A --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 6 | 3 5 | syl5ibcom | |- ( G e. UPGraph -> ( E Fn A -> E : A --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 7 | 6 | imp | |- ( ( G e. UPGraph /\ E Fn A ) -> E : A --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |