This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the (strong) ultrafilter lemma, parameterized over base sets. A set X satisfies the ultrafilter lemma if every filter on X is a subset of some ultrafilter. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isufl | |- ( X e. V -> ( X e. UFL <-> A. f e. ( Fil ` X ) E. g e. ( UFil ` X ) f C_ g ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( x = X -> ( Fil ` x ) = ( Fil ` X ) ) |
|
| 2 | fveq2 | |- ( x = X -> ( UFil ` x ) = ( UFil ` X ) ) |
|
| 3 | 2 | rexeqdv | |- ( x = X -> ( E. g e. ( UFil ` x ) f C_ g <-> E. g e. ( UFil ` X ) f C_ g ) ) |
| 4 | 1 3 | raleqbidv | |- ( x = X -> ( A. f e. ( Fil ` x ) E. g e. ( UFil ` x ) f C_ g <-> A. f e. ( Fil ` X ) E. g e. ( UFil ` X ) f C_ g ) ) |
| 5 | df-ufl | |- UFL = { x | A. f e. ( Fil ` x ) E. g e. ( UFil ` x ) f C_ g } |
|
| 6 | 4 5 | elab2g | |- ( X e. V -> ( X e. UFL <-> A. f e. ( Fil ` X ) E. g e. ( UFil ` X ) f C_ g ) ) |