This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniform Boundedness Theorem, also called the Banach-Steinhaus Theorem. Let T be a collection of bounded linear operators on a Banach space. If, for every vector x , the norms of the operators' values are bounded, then the operators' norms are also bounded. Theorem 4.7-3 of Kreyszig p. 249. See also http://en.wikipedia.org/wiki/Uniform_boundedness_principle . (Contributed by NM, 7-Nov-2007) (Proof shortened by Mario Carneiro, 11-Jan-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ubth.1 | |- X = ( BaseSet ` U ) |
|
| ubth.2 | |- N = ( normCV ` W ) |
||
| ubth.3 | |- M = ( U normOpOLD W ) |
||
| Assertion | ubth | |- ( ( U e. CBan /\ W e. NrmCVec /\ T C_ ( U BLnOp W ) ) -> ( A. x e. X E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( M ` t ) <_ d ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ubth.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ubth.2 | |- N = ( normCV ` W ) |
|
| 3 | ubth.3 | |- M = ( U normOpOLD W ) |
|
| 4 | oveq1 | |- ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( U BLnOp W ) = ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp W ) ) |
|
| 5 | 4 | sseq2d | |- ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( T C_ ( U BLnOp W ) <-> T C_ ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp W ) ) ) |
| 6 | fveq2 | |- ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( BaseSet ` U ) = ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 7 | 1 6 | eqtrid | |- ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> X = ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) ) |
| 8 | 7 | raleqdv | |- ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( A. x e. X E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c ) ) |
| 9 | oveq1 | |- ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( U normOpOLD W ) = ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ) |
|
| 10 | 3 9 | eqtrid | |- ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> M = ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ) |
| 11 | 10 | fveq1d | |- ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( M ` t ) = ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) ) |
| 12 | 11 | breq1d | |- ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( ( M ` t ) <_ d <-> ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) <_ d ) ) |
| 13 | 12 | rexralbidv | |- ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( E. d e. RR A. t e. T ( M ` t ) <_ d <-> E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) <_ d ) ) |
| 14 | 8 13 | bibi12d | |- ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( ( A. x e. X E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( M ` t ) <_ d ) <-> ( A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) <_ d ) ) ) |
| 15 | 5 14 | imbi12d | |- ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( ( T C_ ( U BLnOp W ) -> ( A. x e. X E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( M ` t ) <_ d ) ) <-> ( T C_ ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp W ) -> ( A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) <_ d ) ) ) ) |
| 16 | oveq2 | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp W ) = ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) |
|
| 17 | 16 | sseq2d | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( T C_ ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp W ) <-> T C_ ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) ) |
| 18 | fveq2 | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( normCV ` W ) = ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) |
|
| 19 | 2 18 | eqtrid | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> N = ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) |
| 20 | 19 | fveq1d | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( N ` ( t ` x ) ) = ( ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` ( t ` x ) ) ) |
| 21 | 20 | breq1d | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( ( N ` ( t ` x ) ) <_ c <-> ( ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` ( t ` x ) ) <_ c ) ) |
| 22 | 21 | rexralbidv | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. c e. RR A. t e. T ( ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` ( t ` x ) ) <_ c ) ) |
| 23 | 22 | ralbidv | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` ( t ` x ) ) <_ c ) ) |
| 24 | oveq2 | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) = ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) |
|
| 25 | 24 | fveq1d | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) = ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` t ) ) |
| 26 | 25 | breq1d | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) <_ d <-> ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` t ) <_ d ) ) |
| 27 | 26 | rexralbidv | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) <_ d <-> E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` t ) <_ d ) ) |
| 28 | 23 27 | bibi12d | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( ( A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) <_ d ) <-> ( A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` t ) <_ d ) ) ) |
| 29 | 17 28 | imbi12d | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( ( T C_ ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp W ) -> ( A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) <_ d ) ) <-> ( T C_ ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) -> ( A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` t ) <_ d ) ) ) ) |
| 30 | eqid | |- ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) = ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) |
|
| 31 | eqid | |- ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) = ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) |
|
| 32 | eqid | |- ( IndMet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) = ( IndMet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) |
|
| 33 | eqid | |- ( MetOpen ` ( IndMet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) ) = ( MetOpen ` ( IndMet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 34 | eqid | |- <. <. + , x. >. , abs >. = <. <. + , x. >. , abs >. |
|
| 35 | 34 | cnbn | |- <. <. + , x. >. , abs >. e. CBan |
| 36 | 35 | elimel | |- if ( U e. CBan , U , <. <. + , x. >. , abs >. ) e. CBan |
| 37 | elimnvu | |- if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) e. NrmCVec |
|
| 38 | id | |- ( T C_ ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) -> T C_ ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) |
|
| 39 | 30 31 32 33 36 37 38 | ubthlem3 | |- ( T C_ ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) -> ( A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` t ) <_ d ) ) |
| 40 | 15 29 39 | dedth2h | |- ( ( U e. CBan /\ W e. NrmCVec ) -> ( T C_ ( U BLnOp W ) -> ( A. x e. X E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( M ` t ) <_ d ) ) ) |
| 41 | 40 | 3impia | |- ( ( U e. CBan /\ W e. NrmCVec /\ T C_ ( U BLnOp W ) ) -> ( A. x e. X E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( M ` t ) <_ d ) ) |