This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tposf2 | |- ( Rel A -> ( F : A --> B -> tpos F : `' A --> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposfo2 | |- ( Rel A -> ( F : A -onto-> ran F -> tpos F : `' A -onto-> ran F ) ) |
|
| 2 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 3 | dffn4 | |- ( F Fn A <-> F : A -onto-> ran F ) |
|
| 4 | 2 3 | sylib | |- ( F : A --> B -> F : A -onto-> ran F ) |
| 5 | 1 4 | impel | |- ( ( Rel A /\ F : A --> B ) -> tpos F : `' A -onto-> ran F ) |
| 6 | fof | |- ( tpos F : `' A -onto-> ran F -> tpos F : `' A --> ran F ) |
|
| 7 | 5 6 | syl | |- ( ( Rel A /\ F : A --> B ) -> tpos F : `' A --> ran F ) |
| 8 | frn | |- ( F : A --> B -> ran F C_ B ) |
|
| 9 | 8 | adantl | |- ( ( Rel A /\ F : A --> B ) -> ran F C_ B ) |
| 10 | 7 9 | fssd | |- ( ( Rel A /\ F : A --> B ) -> tpos F : `' A --> B ) |
| 11 | 10 | ex | |- ( Rel A -> ( F : A --> B -> tpos F : `' A --> B ) ) |