This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tposf2 | ⊢ ( Rel 𝐴 → ( 𝐹 : 𝐴 ⟶ 𝐵 → tpos 𝐹 : ◡ 𝐴 ⟶ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposfo2 | ⊢ ( Rel 𝐴 → ( 𝐹 : 𝐴 –onto→ ran 𝐹 → tpos 𝐹 : ◡ 𝐴 –onto→ ran 𝐹 ) ) | |
| 2 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 3 | dffn4 | ⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 : 𝐴 –onto→ ran 𝐹 ) | |
| 4 | 2 3 | sylib | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 : 𝐴 –onto→ ran 𝐹 ) |
| 5 | 1 4 | impel | ⊢ ( ( Rel 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → tpos 𝐹 : ◡ 𝐴 –onto→ ran 𝐹 ) |
| 6 | fof | ⊢ ( tpos 𝐹 : ◡ 𝐴 –onto→ ran 𝐹 → tpos 𝐹 : ◡ 𝐴 ⟶ ran 𝐹 ) | |
| 7 | 5 6 | syl | ⊢ ( ( Rel 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → tpos 𝐹 : ◡ 𝐴 ⟶ ran 𝐹 ) |
| 8 | frn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ran 𝐹 ⊆ 𝐵 ) | |
| 9 | 8 | adantl | ⊢ ( ( Rel 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ran 𝐹 ⊆ 𝐵 ) |
| 10 | 7 9 | fssd | ⊢ ( ( Rel 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → tpos 𝐹 : ◡ 𝐴 ⟶ 𝐵 ) |
| 11 | 10 | ex | ⊢ ( Rel 𝐴 → ( 𝐹 : 𝐴 ⟶ 𝐵 → tpos 𝐹 : ◡ 𝐴 ⟶ 𝐵 ) ) |