This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tposco | |- tpos ( F o. G ) = ( F o. tpos G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coass | |- ( ( F o. G ) o. ( x e. ( ( _V X. _V ) u. { (/) } ) |-> U. `' { x } ) ) = ( F o. ( G o. ( x e. ( ( _V X. _V ) u. { (/) } ) |-> U. `' { x } ) ) ) |
|
| 2 | dftpos4 | |- tpos ( F o. G ) = ( ( F o. G ) o. ( x e. ( ( _V X. _V ) u. { (/) } ) |-> U. `' { x } ) ) |
|
| 3 | dftpos4 | |- tpos G = ( G o. ( x e. ( ( _V X. _V ) u. { (/) } ) |-> U. `' { x } ) ) |
|
| 4 | 3 | coeq2i | |- ( F o. tpos G ) = ( F o. ( G o. ( x e. ( ( _V X. _V ) u. { (/) } ) |-> U. `' { x } ) ) ) |
| 5 | 1 2 4 | 3eqtr4i | |- tpos ( F o. G ) = ( F o. tpos G ) |