This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss . (Contributed by FL, 2-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tpnei.1 | |- X = U. J |
|
| Assertion | tpnei | |- ( J e. Top -> ( S C_ X <-> X e. ( ( nei ` J ) ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpnei.1 | |- X = U. J |
|
| 2 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 3 | opnneiss | |- ( ( J e. Top /\ X e. J /\ S C_ X ) -> X e. ( ( nei ` J ) ` S ) ) |
|
| 4 | 3 | 3exp | |- ( J e. Top -> ( X e. J -> ( S C_ X -> X e. ( ( nei ` J ) ` S ) ) ) ) |
| 5 | 2 4 | mpd | |- ( J e. Top -> ( S C_ X -> X e. ( ( nei ` J ) ` S ) ) ) |
| 6 | ssnei | |- ( ( J e. Top /\ X e. ( ( nei ` J ) ` S ) ) -> S C_ X ) |
|
| 7 | 6 | ex | |- ( J e. Top -> ( X e. ( ( nei ` J ) ` S ) -> S C_ X ) ) |
| 8 | 5 7 | impbid | |- ( J e. Top -> ( S C_ X <-> X e. ( ( nei ` J ) ` S ) ) ) |