This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for symgextf1 . (Contributed by AV, 6-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgext.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| symgext.e | |- E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) |
||
| Assertion | symgextf1lem | |- ( ( K e. N /\ Z e. S ) -> ( ( X e. ( N \ { K } ) /\ Y e. { K } ) -> ( E ` X ) =/= ( E ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgext.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| 2 | symgext.e | |- E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) |
|
| 3 | eqid | |- ( SymGrp ` ( N \ { K } ) ) = ( SymGrp ` ( N \ { K } ) ) |
|
| 4 | 3 1 | symgfv | |- ( ( Z e. S /\ X e. ( N \ { K } ) ) -> ( Z ` X ) e. ( N \ { K } ) ) |
| 5 | 4 | adantll | |- ( ( ( K e. N /\ Z e. S ) /\ X e. ( N \ { K } ) ) -> ( Z ` X ) e. ( N \ { K } ) ) |
| 6 | eldifsni | |- ( ( Z ` X ) e. ( N \ { K } ) -> ( Z ` X ) =/= K ) |
|
| 7 | 1 2 | symgextfv | |- ( ( K e. N /\ Z e. S ) -> ( X e. ( N \ { K } ) -> ( E ` X ) = ( Z ` X ) ) ) |
| 8 | 7 | imp | |- ( ( ( K e. N /\ Z e. S ) /\ X e. ( N \ { K } ) ) -> ( E ` X ) = ( Z ` X ) ) |
| 9 | 8 | neeq1d | |- ( ( ( K e. N /\ Z e. S ) /\ X e. ( N \ { K } ) ) -> ( ( E ` X ) =/= K <-> ( Z ` X ) =/= K ) ) |
| 10 | 6 9 | imbitrrid | |- ( ( ( K e. N /\ Z e. S ) /\ X e. ( N \ { K } ) ) -> ( ( Z ` X ) e. ( N \ { K } ) -> ( E ` X ) =/= K ) ) |
| 11 | 5 10 | mpd | |- ( ( ( K e. N /\ Z e. S ) /\ X e. ( N \ { K } ) ) -> ( E ` X ) =/= K ) |
| 12 | 11 | adantrr | |- ( ( ( K e. N /\ Z e. S ) /\ ( X e. ( N \ { K } ) /\ Y e. { K } ) ) -> ( E ` X ) =/= K ) |
| 13 | elsni | |- ( Y e. { K } -> Y = K ) |
|
| 14 | 1 2 | symgextfve | |- ( K e. N -> ( Y = K -> ( E ` Y ) = K ) ) |
| 15 | 14 | adantr | |- ( ( K e. N /\ Z e. S ) -> ( Y = K -> ( E ` Y ) = K ) ) |
| 16 | 13 15 | syl5com | |- ( Y e. { K } -> ( ( K e. N /\ Z e. S ) -> ( E ` Y ) = K ) ) |
| 17 | 16 | adantl | |- ( ( X e. ( N \ { K } ) /\ Y e. { K } ) -> ( ( K e. N /\ Z e. S ) -> ( E ` Y ) = K ) ) |
| 18 | 17 | impcom | |- ( ( ( K e. N /\ Z e. S ) /\ ( X e. ( N \ { K } ) /\ Y e. { K } ) ) -> ( E ` Y ) = K ) |
| 19 | 12 18 | neeqtrrd | |- ( ( ( K e. N /\ Z e. S ) /\ ( X e. ( N \ { K } ) /\ Y e. { K } ) ) -> ( E ` X ) =/= ( E ` Y ) ) |
| 20 | 19 | ex | |- ( ( K e. N /\ Z e. S ) -> ( ( X e. ( N \ { K } ) /\ Y e. { K } ) -> ( E ` X ) =/= ( E ` Y ) ) ) |