This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of TakeutiZaring p. 18. sspwimpcf , using conventional notation, was translated from its virtual deduction form, sspwimpcfVD , using a translation program. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sspwimpcf | |- ( A C_ B -> ~P A C_ ~P B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | id | |- ( A C_ B -> A C_ B ) |
|
| 3 | id | |- ( x e. ~P A -> x e. ~P A ) |
|
| 4 | elpwi | |- ( x e. ~P A -> x C_ A ) |
|
| 5 | 3 4 | syl | |- ( x e. ~P A -> x C_ A ) |
| 6 | sstr2 | |- ( x C_ A -> ( A C_ B -> x C_ B ) ) |
|
| 7 | 6 | impcom | |- ( ( A C_ B /\ x C_ A ) -> x C_ B ) |
| 8 | 2 5 7 | syl2an | |- ( ( A C_ B /\ x e. ~P A ) -> x C_ B ) |
| 9 | elpwg | |- ( x e. _V -> ( x e. ~P B <-> x C_ B ) ) |
|
| 10 | 9 | biimpar | |- ( ( x e. _V /\ x C_ B ) -> x e. ~P B ) |
| 11 | 1 8 10 | eel021old | |- ( ( A C_ B /\ x e. ~P A ) -> x e. ~P B ) |
| 12 | 11 | ex | |- ( A C_ B -> ( x e. ~P A -> x e. ~P B ) ) |
| 13 | 12 | alrimiv | |- ( A C_ B -> A. x ( x e. ~P A -> x e. ~P B ) ) |
| 14 | df-ss | |- ( ~P A C_ ~P B <-> A. x ( x e. ~P A -> x e. ~P B ) ) |
|
| 15 | 14 | biimpri | |- ( A. x ( x e. ~P A -> x e. ~P B ) -> ~P A C_ ~P B ) |
| 16 | 13 15 | syl | |- ( A C_ B -> ~P A C_ ~P B ) |
| 17 | 16 | iin1 | |- ( A C_ B -> ~P A C_ ~P B ) |