This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of TakeutiZaring p. 18. For the biconditional, see sspwb . The proof sspwimp , using conventional notation, was translated from virtual deduction form, sspwimpVD , using a translation program. (Contributed by Alan Sare, 23-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sspwimp | |- ( A C_ B -> ~P A C_ ~P B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | 1 | a1i | |- ( T. -> x e. _V ) |
| 3 | id | |- ( A C_ B -> A C_ B ) |
|
| 4 | id | |- ( x e. ~P A -> x e. ~P A ) |
|
| 5 | elpwi | |- ( x e. ~P A -> x C_ A ) |
|
| 6 | 4 5 | syl | |- ( x e. ~P A -> x C_ A ) |
| 7 | sstr | |- ( ( x C_ A /\ A C_ B ) -> x C_ B ) |
|
| 8 | 7 | ancoms | |- ( ( A C_ B /\ x C_ A ) -> x C_ B ) |
| 9 | 3 6 8 | syl2an | |- ( ( A C_ B /\ x e. ~P A ) -> x C_ B ) |
| 10 | 2 9 | elpwgded | |- ( ( T. /\ ( A C_ B /\ x e. ~P A ) ) -> x e. ~P B ) |
| 11 | 2 9 10 | uun0.1 | |- ( ( A C_ B /\ x e. ~P A ) -> x e. ~P B ) |
| 12 | 11 | ex | |- ( A C_ B -> ( x e. ~P A -> x e. ~P B ) ) |
| 13 | 12 | alrimiv | |- ( A C_ B -> A. x ( x e. ~P A -> x e. ~P B ) ) |
| 14 | df-ss | |- ( ~P A C_ ~P B <-> A. x ( x e. ~P A -> x e. ~P B ) ) |
|
| 15 | 14 | biimpri | |- ( A. x ( x e. ~P A -> x e. ~P B ) -> ~P A C_ ~P B ) |
| 16 | 13 15 | syl | |- ( A C_ B -> ~P A C_ ~P B ) |
| 17 | 16 | iin1 | |- ( A C_ B -> ~P A C_ ~P B ) |