This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | srngstr.r | |- R = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( *r ` ndx ) , .* >. } ) |
|
| Assertion | srngmulr | |- ( .x. e. X -> .x. = ( .r ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srngstr.r | |- R = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( *r ` ndx ) , .* >. } ) |
|
| 2 | 1 | srngstr | |- R Struct <. 1 , 4 >. |
| 3 | mulridx | |- .r = Slot ( .r ` ndx ) |
|
| 4 | snsstp3 | |- { <. ( .r ` ndx ) , .x. >. } C_ { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } |
|
| 5 | ssun1 | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( *r ` ndx ) , .* >. } ) |
|
| 6 | 5 1 | sseqtrri | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } C_ R |
| 7 | 4 6 | sstri | |- { <. ( .r ` ndx ) , .x. >. } C_ R |
| 8 | 2 3 7 | strfv | |- ( .x. e. X -> .x. = ( .r ` R ) ) |