This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between square root and squares. (Contributed by NM, 31-Jul-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqrtthi.1 | |- A e. RR |
|
| sqr11.1 | |- B e. RR |
||
| Assertion | sqrtmsq2i | |- ( ( 0 <_ A /\ 0 <_ B ) -> ( ( sqrt ` A ) = B <-> A = ( B x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrtthi.1 | |- A e. RR |
|
| 2 | sqr11.1 | |- B e. RR |
|
| 3 | sqrtsq2 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( sqrt ` A ) = B <-> A = ( B ^ 2 ) ) ) |
|
| 4 | 2 3 | mpanr1 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ 0 <_ B ) -> ( ( sqrt ` A ) = B <-> A = ( B ^ 2 ) ) ) |
| 5 | 1 4 | mpanl1 | |- ( ( 0 <_ A /\ 0 <_ B ) -> ( ( sqrt ` A ) = B <-> A = ( B ^ 2 ) ) ) |
| 6 | 2 | recni | |- B e. CC |
| 7 | 6 | sqvali | |- ( B ^ 2 ) = ( B x. B ) |
| 8 | 7 | eqeq2i | |- ( A = ( B ^ 2 ) <-> A = ( B x. B ) ) |
| 9 | 5 8 | bitrdi | |- ( ( 0 <_ A /\ 0 <_ B ) -> ( ( sqrt ` A ) = B <-> A = ( B x. B ) ) ) |