This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Biconditional property for substitution. Closed form of sbbii . Specialization of biconditional. (Contributed by NM, 2-Jun-1993) Revise df-sb . (Revised by BJ, 22-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spsbbi | |- ( A. x ( ph <-> ps ) -> ( [ t / x ] ph <-> [ t / x ] ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp | |- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
|
| 2 | 1 | alimi | |- ( A. x ( ph <-> ps ) -> A. x ( ph -> ps ) ) |
| 3 | spsbim | |- ( A. x ( ph -> ps ) -> ( [ t / x ] ph -> [ t / x ] ps ) ) |
|
| 4 | 2 3 | syl | |- ( A. x ( ph <-> ps ) -> ( [ t / x ] ph -> [ t / x ] ps ) ) |
| 5 | biimpr | |- ( ( ph <-> ps ) -> ( ps -> ph ) ) |
|
| 6 | 5 | alimi | |- ( A. x ( ph <-> ps ) -> A. x ( ps -> ph ) ) |
| 7 | spsbim | |- ( A. x ( ps -> ph ) -> ( [ t / x ] ps -> [ t / x ] ph ) ) |
|
| 8 | 6 7 | syl | |- ( A. x ( ph <-> ps ) -> ( [ t / x ] ps -> [ t / x ] ph ) ) |
| 9 | 4 8 | impbid | |- ( A. x ( ph <-> ps ) -> ( [ t / x ] ph <-> [ t / x ] ps ) ) |