This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set of arrows of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setcbas.c | |- C = ( SetCat ` U ) |
|
| setcbas.u | |- ( ph -> U e. V ) |
||
| setchomfval.h | |- H = ( Hom ` C ) |
||
| Assertion | setchomfval | |- ( ph -> H = ( x e. U , y e. U |-> ( y ^m x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcbas.c | |- C = ( SetCat ` U ) |
|
| 2 | setcbas.u | |- ( ph -> U e. V ) |
|
| 3 | setchomfval.h | |- H = ( Hom ` C ) |
|
| 4 | eqidd | |- ( ph -> ( x e. U , y e. U |-> ( y ^m x ) ) = ( x e. U , y e. U |-> ( y ^m x ) ) ) |
|
| 5 | eqidd | |- ( ph -> ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) = ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) ) |
|
| 6 | 1 2 4 5 | setcval | |- ( ph -> C = { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } ) |
| 7 | catstr | |- { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } Struct <. 1 , ; 1 5 >. |
|
| 8 | homid | |- Hom = Slot ( Hom ` ndx ) |
|
| 9 | snsstp2 | |- { <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( y ^m x ) ) >. } C_ { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } |
|
| 10 | mpoexga | |- ( ( U e. V /\ U e. V ) -> ( x e. U , y e. U |-> ( y ^m x ) ) e. _V ) |
|
| 11 | 2 2 10 | syl2anc | |- ( ph -> ( x e. U , y e. U |-> ( y ^m x ) ) e. _V ) |
| 12 | 6 7 8 9 11 3 | strfv3 | |- ( ph -> H = ( x e. U , y e. U |-> ( y ^m x ) ) ) |