This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Schroeder-Bernstein Theorem in class form. (Contributed by NM, 28-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbthcl | |- ~~ = ( ~<_ i^i `' ~<_ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen | |- Rel ~~ |
|
| 2 | inss1 | |- ( ~<_ i^i `' ~<_ ) C_ ~<_ |
|
| 3 | reldom | |- Rel ~<_ |
|
| 4 | relss | |- ( ( ~<_ i^i `' ~<_ ) C_ ~<_ -> ( Rel ~<_ -> Rel ( ~<_ i^i `' ~<_ ) ) ) |
|
| 5 | 2 3 4 | mp2 | |- Rel ( ~<_ i^i `' ~<_ ) |
| 6 | brin | |- ( x ( ~<_ i^i `' ~<_ ) y <-> ( x ~<_ y /\ x `' ~<_ y ) ) |
|
| 7 | vex | |- x e. _V |
|
| 8 | vex | |- y e. _V |
|
| 9 | 7 8 | brcnv | |- ( x `' ~<_ y <-> y ~<_ x ) |
| 10 | 9 | anbi2i | |- ( ( x ~<_ y /\ x `' ~<_ y ) <-> ( x ~<_ y /\ y ~<_ x ) ) |
| 11 | sbthb | |- ( ( x ~<_ y /\ y ~<_ x ) <-> x ~~ y ) |
|
| 12 | 6 10 11 | 3bitrri | |- ( x ~~ y <-> x ( ~<_ i^i `' ~<_ ) y ) |
| 13 | 1 5 12 | eqbrriv | |- ~~ = ( ~<_ i^i `' ~<_ ) |