This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A composition law for class substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker sbccow when possible. (Contributed by NM, 26-Sep-2003) (Revised by Mario Carneiro, 13-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcco | |- ( [. A / y ]. [. y / x ]. ph <-> [. A / x ]. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex | |- ( [. A / y ]. [. y / x ]. ph -> A e. _V ) |
|
| 2 | sbcex | |- ( [. A / x ]. ph -> A e. _V ) |
|
| 3 | dfsbcq | |- ( z = A -> ( [. z / y ]. [. y / x ]. ph <-> [. A / y ]. [. y / x ]. ph ) ) |
|
| 4 | dfsbcq | |- ( z = A -> ( [. z / x ]. ph <-> [. A / x ]. ph ) ) |
|
| 5 | sbsbc | |- ( [ y / x ] ph <-> [. y / x ]. ph ) |
|
| 6 | 5 | sbbii | |- ( [ z / y ] [ y / x ] ph <-> [ z / y ] [. y / x ]. ph ) |
| 7 | nfv | |- F/ y ph |
|
| 8 | 7 | sbco2 | |- ( [ z / y ] [ y / x ] ph <-> [ z / x ] ph ) |
| 9 | sbsbc | |- ( [ z / y ] [. y / x ]. ph <-> [. z / y ]. [. y / x ]. ph ) |
|
| 10 | 6 8 9 | 3bitr3ri | |- ( [. z / y ]. [. y / x ]. ph <-> [ z / x ] ph ) |
| 11 | sbsbc | |- ( [ z / x ] ph <-> [. z / x ]. ph ) |
|
| 12 | 10 11 | bitri | |- ( [. z / y ]. [. y / x ]. ph <-> [. z / x ]. ph ) |
| 13 | 3 4 12 | vtoclbg | |- ( A e. _V -> ( [. A / y ]. [. y / x ]. ph <-> [. A / x ]. ph ) ) |
| 14 | 1 2 13 | pm5.21nii | |- ( [. A / y ]. [. y / x ]. ph <-> [. A / x ]. ph ) |