This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of sbc5 . This proof helps show how clelab works, since it is equivalent but shorter thanks to now-available library theorems like vtoclbg and isset . (Contributed by NM, 23-Aug-1993) (Revised by Mario Carneiro, 12-Oct-2016) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbc5ALT | |- ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex | |- ( [. A / x ]. ph -> A e. _V ) |
|
| 2 | exsimpl | |- ( E. x ( x = A /\ ph ) -> E. x x = A ) |
|
| 3 | isset | |- ( A e. _V <-> E. x x = A ) |
|
| 4 | 2 3 | sylibr | |- ( E. x ( x = A /\ ph ) -> A e. _V ) |
| 5 | dfsbcq2 | |- ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) ) |
|
| 6 | eqeq2 | |- ( y = A -> ( x = y <-> x = A ) ) |
|
| 7 | 6 | anbi1d | |- ( y = A -> ( ( x = y /\ ph ) <-> ( x = A /\ ph ) ) ) |
| 8 | 7 | exbidv | |- ( y = A -> ( E. x ( x = y /\ ph ) <-> E. x ( x = A /\ ph ) ) ) |
| 9 | sb5 | |- ( [ y / x ] ph <-> E. x ( x = y /\ ph ) ) |
|
| 10 | 5 8 9 | vtoclbg | |- ( A e. _V -> ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) ) |
| 11 | 1 4 10 | pm5.21nii | |- ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) |