This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem to move a substitution in and out of a class abstraction. (Contributed by NM, 27-Sep-2003) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 28-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbabel.1 | |- F/_ x A |
|
| Assertion | sbabel | |- ( [ y / x ] { z | ph } e. A <-> { z | [ y / x ] ph } e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbabel.1 | |- F/_ x A |
|
| 2 | clabel | |- ( { z | ph } e. A <-> E. v ( v e. A /\ A. z ( z e. v <-> ph ) ) ) |
|
| 3 | 2 | sbbii | |- ( [ y / x ] { z | ph } e. A <-> [ y / x ] E. v ( v e. A /\ A. z ( z e. v <-> ph ) ) ) |
| 4 | sbex | |- ( [ y / x ] E. v ( v e. A /\ A. z ( z e. v <-> ph ) ) <-> E. v [ y / x ] ( v e. A /\ A. z ( z e. v <-> ph ) ) ) |
|
| 5 | sban | |- ( [ y / x ] ( v e. A /\ A. z ( z e. v <-> ph ) ) <-> ( [ y / x ] v e. A /\ [ y / x ] A. z ( z e. v <-> ph ) ) ) |
|
| 6 | 1 | nfcri | |- F/ x v e. A |
| 7 | 6 | sbf | |- ( [ y / x ] v e. A <-> v e. A ) |
| 8 | sbv | |- ( [ y / x ] z e. v <-> z e. v ) |
|
| 9 | 8 | sbrbis | |- ( [ y / x ] ( z e. v <-> ph ) <-> ( z e. v <-> [ y / x ] ph ) ) |
| 10 | 9 | sbalv | |- ( [ y / x ] A. z ( z e. v <-> ph ) <-> A. z ( z e. v <-> [ y / x ] ph ) ) |
| 11 | 7 10 | anbi12i | |- ( ( [ y / x ] v e. A /\ [ y / x ] A. z ( z e. v <-> ph ) ) <-> ( v e. A /\ A. z ( z e. v <-> [ y / x ] ph ) ) ) |
| 12 | 5 11 | bitri | |- ( [ y / x ] ( v e. A /\ A. z ( z e. v <-> ph ) ) <-> ( v e. A /\ A. z ( z e. v <-> [ y / x ] ph ) ) ) |
| 13 | 12 | exbii | |- ( E. v [ y / x ] ( v e. A /\ A. z ( z e. v <-> ph ) ) <-> E. v ( v e. A /\ A. z ( z e. v <-> [ y / x ] ph ) ) ) |
| 14 | 3 4 13 | 3bitri | |- ( [ y / x ] { z | ph } e. A <-> E. v ( v e. A /\ A. z ( z e. v <-> [ y / x ] ph ) ) ) |
| 15 | clabel | |- ( { z | [ y / x ] ph } e. A <-> E. v ( v e. A /\ A. z ( z e. v <-> [ y / x ] ph ) ) ) |
|
| 16 | 14 15 | bitr4i | |- ( [ y / x ] { z | ph } e. A <-> { z | [ y / x ] ph } e. A ) |