This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution of variable in universal quantifier. Version of sb8 with a disjoint variable condition, not requiring ax-10 or ax-13 . (Contributed by NM, 16-May-1993) (Revised by Wolf Lammen, 19-Jan-2023) Avoid ax-10 . (Revised by SN, 5-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sb8f.nf | |- F/ y ph |
|
| Assertion | sb8f | |- ( A. x ph <-> A. y [ y / x ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb8f.nf | |- F/ y ph |
|
| 2 | sb6 | |- ( [ y / x ] ph <-> A. x ( x = y -> ph ) ) |
|
| 3 | 2 | albii | |- ( A. y [ y / x ] ph <-> A. y A. x ( x = y -> ph ) ) |
| 4 | alcom | |- ( A. y A. x ( x = y -> ph ) <-> A. x A. y ( x = y -> ph ) ) |
|
| 5 | sb6 | |- ( [ x / y ] ph <-> A. y ( y = x -> ph ) ) |
|
| 6 | 1 | sbf | |- ( [ x / y ] ph <-> ph ) |
| 7 | equcom | |- ( y = x <-> x = y ) |
|
| 8 | 7 | imbi1i | |- ( ( y = x -> ph ) <-> ( x = y -> ph ) ) |
| 9 | 8 | albii | |- ( A. y ( y = x -> ph ) <-> A. y ( x = y -> ph ) ) |
| 10 | 5 6 9 | 3bitr3ri | |- ( A. y ( x = y -> ph ) <-> ph ) |
| 11 | 10 | albii | |- ( A. x A. y ( x = y -> ph ) <-> A. x ph ) |
| 12 | 3 4 11 | 3bitrri | |- ( A. x ph <-> A. y [ y / x ] ph ) |