This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binary relation of a satisfaction predicate as function over wff codes at a successor. (Contributed by AV, 13-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | satfbrsuc.s | |- S = ( M Sat E ) |
|
| satfbrsuc.p | |- P = ( S ` N ) |
||
| Assertion | satfbrsuc | |- ( ( ( M e. V /\ E e. W ) /\ N e. _om /\ ( A e. X /\ B e. Y ) ) -> ( A ( S ` suc N ) B <-> ( A P B \/ E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satfbrsuc.s | |- S = ( M Sat E ) |
|
| 2 | satfbrsuc.p | |- P = ( S ` N ) |
|
| 3 | 1 | satfvsuc | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( S ` suc N ) = ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 4 | 3 | 3expa | |- ( ( ( M e. V /\ E e. W ) /\ N e. _om ) -> ( S ` suc N ) = ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 5 | 4 | 3adant3 | |- ( ( ( M e. V /\ E e. W ) /\ N e. _om /\ ( A e. X /\ B e. Y ) ) -> ( S ` suc N ) = ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 6 | 5 | breqd | |- ( ( ( M e. V /\ E e. W ) /\ N e. _om /\ ( A e. X /\ B e. Y ) ) -> ( A ( S ` suc N ) B <-> A ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) B ) ) |
| 7 | brun | |- ( A ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) B <-> ( A ( S ` N ) B \/ A { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } B ) ) |
|
| 8 | 2 | eqcomi | |- ( S ` N ) = P |
| 9 | 8 | breqi | |- ( A ( S ` N ) B <-> A P B ) |
| 10 | 9 | a1i | |- ( ( A e. X /\ B e. Y ) -> ( A ( S ` N ) B <-> A P B ) ) |
| 11 | eqeq1 | |- ( x = A -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> A = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
|
| 12 | eqeq1 | |- ( y = B -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) <-> B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
|
| 13 | 11 12 | bi2anan9 | |- ( ( x = A /\ y = B ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) ) |
| 14 | 13 | rexbidv | |- ( ( x = A /\ y = B ) -> ( E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) ) |
| 15 | eqeq1 | |- ( x = A -> ( x = A.g i ( 1st ` u ) <-> A = A.g i ( 1st ` u ) ) ) |
|
| 16 | eqeq1 | |- ( y = B -> ( y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } <-> B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
|
| 17 | 15 16 | bi2anan9 | |- ( ( x = A /\ y = B ) -> ( ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 18 | 17 | rexbidv | |- ( ( x = A /\ y = B ) -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 19 | 14 18 | orbi12d | |- ( ( x = A /\ y = B ) -> ( ( E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
| 20 | 19 | rexbidv | |- ( ( x = A /\ y = B ) -> ( E. u e. P ( E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
| 21 | 8 | rexeqi | |- ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
| 22 | 21 | orbi1i | |- ( ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 23 | 8 22 | rexeqbii | |- ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. P ( E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 24 | 23 | opabbii | |- { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { <. x , y >. | E. u e. P ( E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } |
| 25 | 20 24 | brabga | |- ( ( A e. X /\ B e. Y ) -> ( A { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } B <-> E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
| 26 | 10 25 | orbi12d | |- ( ( A e. X /\ B e. Y ) -> ( ( A ( S ` N ) B \/ A { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } B ) <-> ( A P B \/ E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) |
| 27 | 7 26 | bitrid | |- ( ( A e. X /\ B e. Y ) -> ( A ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) B <-> ( A P B \/ E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) |
| 28 | 27 | 3ad2ant3 | |- ( ( ( M e. V /\ E e. W ) /\ N e. _om /\ ( A e. X /\ B e. Y ) ) -> ( A ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) B <-> ( A P B \/ E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) |
| 29 | 6 28 | bitrd | |- ( ( ( M e. V /\ E e. W ) /\ N e. _om /\ ( A e. X /\ B e. Y ) ) -> ( A ( S ` suc N ) B <-> ( A P B \/ E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) |