This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The singletons consisting of length 3 strings which have distinct third symbols are disjunct. (Contributed by AV, 17-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | s3sndisj | |- ( ( A e. X /\ B e. Y ) -> Disj_ c e. Z { <" A B c "> } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc | |- ( c = d -> ( c = d \/ ( { <" A B c "> } i^i { <" A B d "> } ) = (/) ) ) |
|
| 2 | 1 | a1d | |- ( c = d -> ( ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) -> ( c = d \/ ( { <" A B c "> } i^i { <" A B d "> } ) = (/) ) ) ) |
| 3 | s3cli | |- <" A B c "> e. Word _V |
|
| 4 | elex | |- ( A e. X -> A e. _V ) |
|
| 5 | elex | |- ( B e. Y -> B e. _V ) |
|
| 6 | 4 5 | anim12i | |- ( ( A e. X /\ B e. Y ) -> ( A e. _V /\ B e. _V ) ) |
| 7 | elex | |- ( d e. Z -> d e. _V ) |
|
| 8 | 7 | adantl | |- ( ( c e. Z /\ d e. Z ) -> d e. _V ) |
| 9 | 6 8 | anim12i | |- ( ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) -> ( ( A e. _V /\ B e. _V ) /\ d e. _V ) ) |
| 10 | df-3an | |- ( ( A e. _V /\ B e. _V /\ d e. _V ) <-> ( ( A e. _V /\ B e. _V ) /\ d e. _V ) ) |
|
| 11 | 9 10 | sylibr | |- ( ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) -> ( A e. _V /\ B e. _V /\ d e. _V ) ) |
| 12 | eqwrds3 | |- ( ( <" A B c "> e. Word _V /\ ( A e. _V /\ B e. _V /\ d e. _V ) ) -> ( <" A B c "> = <" A B d "> <-> ( ( # ` <" A B c "> ) = 3 /\ ( ( <" A B c "> ` 0 ) = A /\ ( <" A B c "> ` 1 ) = B /\ ( <" A B c "> ` 2 ) = d ) ) ) ) |
|
| 13 | 3 11 12 | sylancr | |- ( ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) -> ( <" A B c "> = <" A B d "> <-> ( ( # ` <" A B c "> ) = 3 /\ ( ( <" A B c "> ` 0 ) = A /\ ( <" A B c "> ` 1 ) = B /\ ( <" A B c "> ` 2 ) = d ) ) ) ) |
| 14 | s3fv2 | |- ( c e. _V -> ( <" A B c "> ` 2 ) = c ) |
|
| 15 | 14 | elv | |- ( <" A B c "> ` 2 ) = c |
| 16 | simp3 | |- ( ( ( <" A B c "> ` 0 ) = A /\ ( <" A B c "> ` 1 ) = B /\ ( <" A B c "> ` 2 ) = d ) -> ( <" A B c "> ` 2 ) = d ) |
|
| 17 | 15 16 | eqtr3id | |- ( ( ( <" A B c "> ` 0 ) = A /\ ( <" A B c "> ` 1 ) = B /\ ( <" A B c "> ` 2 ) = d ) -> c = d ) |
| 18 | 17 | adantl | |- ( ( ( # ` <" A B c "> ) = 3 /\ ( ( <" A B c "> ` 0 ) = A /\ ( <" A B c "> ` 1 ) = B /\ ( <" A B c "> ` 2 ) = d ) ) -> c = d ) |
| 19 | 13 18 | biimtrdi | |- ( ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) -> ( <" A B c "> = <" A B d "> -> c = d ) ) |
| 20 | 19 | con3rr3 | |- ( -. c = d -> ( ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) -> -. <" A B c "> = <" A B d "> ) ) |
| 21 | 20 | imp | |- ( ( -. c = d /\ ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) ) -> -. <" A B c "> = <" A B d "> ) |
| 22 | 21 | neqned | |- ( ( -. c = d /\ ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) ) -> <" A B c "> =/= <" A B d "> ) |
| 23 | disjsn2 | |- ( <" A B c "> =/= <" A B d "> -> ( { <" A B c "> } i^i { <" A B d "> } ) = (/) ) |
|
| 24 | 22 23 | syl | |- ( ( -. c = d /\ ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) ) -> ( { <" A B c "> } i^i { <" A B d "> } ) = (/) ) |
| 25 | 24 | olcd | |- ( ( -. c = d /\ ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) ) -> ( c = d \/ ( { <" A B c "> } i^i { <" A B d "> } ) = (/) ) ) |
| 26 | 25 | ex | |- ( -. c = d -> ( ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) -> ( c = d \/ ( { <" A B c "> } i^i { <" A B d "> } ) = (/) ) ) ) |
| 27 | 2 26 | pm2.61i | |- ( ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) -> ( c = d \/ ( { <" A B c "> } i^i { <" A B d "> } ) = (/) ) ) |
| 28 | 27 | ralrimivva | |- ( ( A e. X /\ B e. Y ) -> A. c e. Z A. d e. Z ( c = d \/ ( { <" A B c "> } i^i { <" A B d "> } ) = (/) ) ) |
| 29 | eqidd | |- ( c = d -> A = A ) |
|
| 30 | eqidd | |- ( c = d -> B = B ) |
|
| 31 | id | |- ( c = d -> c = d ) |
|
| 32 | 29 30 31 | s3eqd | |- ( c = d -> <" A B c "> = <" A B d "> ) |
| 33 | 32 | sneqd | |- ( c = d -> { <" A B c "> } = { <" A B d "> } ) |
| 34 | 33 | disjor | |- ( Disj_ c e. Z { <" A B c "> } <-> A. c e. Z A. d e. Z ( c = d \/ ( { <" A B c "> } i^i { <" A B d "> } ) = (/) ) ) |
| 35 | 28 34 | sylibr | |- ( ( A e. X /\ B e. Y ) -> Disj_ c e. Z { <" A B c "> } ) |