This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a singleton word is a singleton. (Contributed by AV, 9-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | s1dm | |- dom <" A "> = { 0 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1cli | |- <" A "> e. Word _V |
|
| 2 | wrdf | |- ( <" A "> e. Word _V -> <" A "> : ( 0 ..^ ( # ` <" A "> ) ) --> _V ) |
|
| 3 | 1 2 | ax-mp | |- <" A "> : ( 0 ..^ ( # ` <" A "> ) ) --> _V |
| 4 | s1len | |- ( # ` <" A "> ) = 1 |
|
| 5 | oveq2 | |- ( ( # ` <" A "> ) = 1 -> ( 0 ..^ ( # ` <" A "> ) ) = ( 0 ..^ 1 ) ) |
|
| 6 | fzo01 | |- ( 0 ..^ 1 ) = { 0 } |
|
| 7 | 5 6 | eqtrdi | |- ( ( # ` <" A "> ) = 1 -> ( 0 ..^ ( # ` <" A "> ) ) = { 0 } ) |
| 8 | 4 7 | ax-mp | |- ( 0 ..^ ( # ` <" A "> ) ) = { 0 } |
| 9 | 8 | eqcomi | |- { 0 } = ( 0 ..^ ( # ` <" A "> ) ) |
| 10 | 9 | feq2i | |- ( <" A "> : { 0 } --> _V <-> <" A "> : ( 0 ..^ ( # ` <" A "> ) ) --> _V ) |
| 11 | 3 10 | mpbir | |- <" A "> : { 0 } --> _V |
| 12 | 11 | fdmi | |- dom <" A "> = { 0 } |