This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of the non-unital ring homomorphisms restricted to a subset of non-unital rings is a non-unital ring homomorphisms. (Contributed by AV, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rnghmresel.h | |- ( ph -> H = ( RngHom |` ( B X. B ) ) ) |
|
| Assertion | rnghmresel | |- ( ( ph /\ ( X e. B /\ Y e. B ) /\ F e. ( X H Y ) ) -> F e. ( X RngHom Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmresel.h | |- ( ph -> H = ( RngHom |` ( B X. B ) ) ) |
|
| 2 | 1 | adantr | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> H = ( RngHom |` ( B X. B ) ) ) |
| 3 | 2 | oveqd | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X H Y ) = ( X ( RngHom |` ( B X. B ) ) Y ) ) |
| 4 | ovres | |- ( ( X e. B /\ Y e. B ) -> ( X ( RngHom |` ( B X. B ) ) Y ) = ( X RngHom Y ) ) |
|
| 5 | 4 | adantl | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( RngHom |` ( B X. B ) ) Y ) = ( X RngHom Y ) ) |
| 6 | 3 5 | eqtrd | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X H Y ) = ( X RngHom Y ) ) |
| 7 | 6 | eleq2d | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( F e. ( X H Y ) <-> F e. ( X RngHom Y ) ) ) |
| 8 | 7 | biimp3a | |- ( ( ph /\ ( X e. B /\ Y e. B ) /\ F e. ( X H Y ) ) -> F e. ( X RngHom Y ) ) |