This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any function from a finite set onto the same set must be a bijection. (Contributed by AV, 5-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rneqdmfinf1o | |- ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> F : A -1-1-onto-> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn4 | |- ( F Fn A <-> F : A -onto-> ran F ) |
|
| 2 | 1 | biimpi | |- ( F Fn A -> F : A -onto-> ran F ) |
| 3 | 2 | 3ad2ant2 | |- ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> F : A -onto-> ran F ) |
| 4 | foeq3 | |- ( ran F = A -> ( F : A -onto-> ran F <-> F : A -onto-> A ) ) |
|
| 5 | 4 | 3ad2ant3 | |- ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> ( F : A -onto-> ran F <-> F : A -onto-> A ) ) |
| 6 | 3 5 | mpbid | |- ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> F : A -onto-> A ) |
| 7 | enrefg | |- ( A e. Fin -> A ~~ A ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> A ~~ A ) |
| 9 | simp1 | |- ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> A e. Fin ) |
|
| 10 | fofinf1o | |- ( ( F : A -onto-> A /\ A ~~ A /\ A e. Fin ) -> F : A -1-1-onto-> A ) |
|
| 11 | 6 8 9 10 | syl3anc | |- ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> F : A -1-1-onto-> A ) |