This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bidirectional closure of restricted iota when domain is not empty. (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 24-Dec-2016) (Revised by NM, 13-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riotaclb | |- ( -. (/) e. A -> ( E! x e. A ph <-> ( iota_ x e. A ph ) e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotacl | |- ( E! x e. A ph -> ( iota_ x e. A ph ) e. A ) |
|
| 2 | riotaund | |- ( -. E! x e. A ph -> ( iota_ x e. A ph ) = (/) ) |
|
| 3 | 2 | eleq1d | |- ( -. E! x e. A ph -> ( ( iota_ x e. A ph ) e. A <-> (/) e. A ) ) |
| 4 | 3 | notbid | |- ( -. E! x e. A ph -> ( -. ( iota_ x e. A ph ) e. A <-> -. (/) e. A ) ) |
| 5 | 4 | biimprcd | |- ( -. (/) e. A -> ( -. E! x e. A ph -> -. ( iota_ x e. A ph ) e. A ) ) |
| 6 | 5 | con4d | |- ( -. (/) e. A -> ( ( iota_ x e. A ph ) e. A -> E! x e. A ph ) ) |
| 7 | 1 6 | impbid2 | |- ( -. (/) e. A -> ( E! x e. A ph <-> ( iota_ x e. A ph ) e. A ) ) |