This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020) (Revised by AV, 8-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcco.c | |- C = ( RingCat ` U ) |
|
| ringcco.u | |- ( ph -> U e. V ) |
||
| ringcco.o | |- .x. = ( comp ` C ) |
||
| ringcco.x | |- ( ph -> X e. U ) |
||
| ringcco.y | |- ( ph -> Y e. U ) |
||
| ringcco.z | |- ( ph -> Z e. U ) |
||
| ringcco.f | |- ( ph -> F : ( Base ` X ) --> ( Base ` Y ) ) |
||
| ringcco.g | |- ( ph -> G : ( Base ` Y ) --> ( Base ` Z ) ) |
||
| Assertion | ringcco | |- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G o. F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcco.c | |- C = ( RingCat ` U ) |
|
| 2 | ringcco.u | |- ( ph -> U e. V ) |
|
| 3 | ringcco.o | |- .x. = ( comp ` C ) |
|
| 4 | ringcco.x | |- ( ph -> X e. U ) |
|
| 5 | ringcco.y | |- ( ph -> Y e. U ) |
|
| 6 | ringcco.z | |- ( ph -> Z e. U ) |
|
| 7 | ringcco.f | |- ( ph -> F : ( Base ` X ) --> ( Base ` Y ) ) |
|
| 8 | ringcco.g | |- ( ph -> G : ( Base ` Y ) --> ( Base ` Z ) ) |
|
| 9 | 1 2 3 | ringccofval | |- ( ph -> .x. = ( comp ` ( ExtStrCat ` U ) ) ) |
| 10 | 9 | oveqd | |- ( ph -> ( <. X , Y >. .x. Z ) = ( <. X , Y >. ( comp ` ( ExtStrCat ` U ) ) Z ) ) |
| 11 | 10 | oveqd | |- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G ( <. X , Y >. ( comp ` ( ExtStrCat ` U ) ) Z ) F ) ) |
| 12 | eqid | |- ( ExtStrCat ` U ) = ( ExtStrCat ` U ) |
|
| 13 | eqid | |- ( comp ` ( ExtStrCat ` U ) ) = ( comp ` ( ExtStrCat ` U ) ) |
|
| 14 | eqid | |- ( Base ` X ) = ( Base ` X ) |
|
| 15 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 16 | eqid | |- ( Base ` Z ) = ( Base ` Z ) |
|
| 17 | 12 2 13 4 5 6 14 15 16 7 8 | estrcco | |- ( ph -> ( G ( <. X , Y >. ( comp ` ( ExtStrCat ` U ) ) Z ) F ) = ( G o. F ) ) |
| 18 | 11 17 | eqtrd | |- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G o. F ) ) |