This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rhmpsr et al. (Contributed by SN, 8-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmpsrlem1.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| rhmpsrlem1.r | |- ( ph -> R e. Ring ) |
||
| rhmpsrlem1.x | |- ( ph -> X : D --> ( Base ` R ) ) |
||
| rhmpsrlem1.y | |- ( ph -> Y : D --> ( Base ` R ) ) |
||
| Assertion | rhmpsrlem1 | |- ( ( ph /\ k e. D ) -> ( x e. { y e. D | y oR <_ k } |-> ( ( X ` x ) ( .r ` R ) ( Y ` ( k oF - x ) ) ) ) finSupp ( 0g ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmpsrlem1.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 2 | rhmpsrlem1.r | |- ( ph -> R e. Ring ) |
|
| 3 | rhmpsrlem1.x | |- ( ph -> X : D --> ( Base ` R ) ) |
|
| 4 | rhmpsrlem1.y | |- ( ph -> Y : D --> ( Base ` R ) ) |
|
| 5 | ovexd | |- ( ( ( ph /\ k e. D ) /\ x e. { y e. D | y oR <_ k } ) -> ( ( X ` x ) ( .r ` R ) ( Y ` ( k oF - x ) ) ) e. _V ) |
|
| 6 | 5 | fmpttd | |- ( ( ph /\ k e. D ) -> ( x e. { y e. D | y oR <_ k } |-> ( ( X ` x ) ( .r ` R ) ( Y ` ( k oF - x ) ) ) ) : { y e. D | y oR <_ k } --> _V ) |
| 7 | 1 | psrbaglefi | |- ( k e. D -> { y e. D | y oR <_ k } e. Fin ) |
| 8 | 7 | adantl | |- ( ( ph /\ k e. D ) -> { y e. D | y oR <_ k } e. Fin ) |
| 9 | fvexd | |- ( ( ph /\ k e. D ) -> ( 0g ` R ) e. _V ) |
|
| 10 | 6 8 9 | fdmfifsupp | |- ( ( ph /\ k e. D ) -> ( x e. { y e. D | y oR <_ k } |-> ( ( X ` x ) ( .r ` R ) ( Y ` ( k oF - x ) ) ) ) finSupp ( 0g ` R ) ) |