This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of reconn . The set of real numbers is connected. (Contributed by Jeff Hankins, 17-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | retopconn | |- ( topGen ` ran (,) ) e. Conn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 2 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 3 | 2 | restid | |- ( ( topGen ` ran (,) ) e. Top -> ( ( topGen ` ran (,) ) |`t RR ) = ( topGen ` ran (,) ) ) |
| 4 | 1 3 | ax-mp | |- ( ( topGen ` ran (,) ) |`t RR ) = ( topGen ` ran (,) ) |
| 5 | iccssre | |- ( ( x e. RR /\ y e. RR ) -> ( x [,] y ) C_ RR ) |
|
| 6 | 5 | rgen2 | |- A. x e. RR A. y e. RR ( x [,] y ) C_ RR |
| 7 | ssid | |- RR C_ RR |
|
| 8 | reconn | |- ( RR C_ RR -> ( ( ( topGen ` ran (,) ) |`t RR ) e. Conn <-> A. x e. RR A. y e. RR ( x [,] y ) C_ RR ) ) |
|
| 9 | 7 8 | ax-mp | |- ( ( ( topGen ` ran (,) ) |`t RR ) e. Conn <-> A. x e. RR A. y e. RR ( x [,] y ) C_ RR ) |
| 10 | 6 9 | mpbir | |- ( ( topGen ` ran (,) ) |`t RR ) e. Conn |
| 11 | 4 10 | eqeltrri | |- ( topGen ` ran (,) ) e. Conn |