This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 . (Contributed by Anthony Hart, 17-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | merco1lem1 | |- ( ph -> ( F. -> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | merco1 | |- ( ( ( ( ( F. -> ph ) -> ( ph -> F. ) ) -> ( ph -> F. ) ) -> ( F. -> ph ) ) -> ( ( ( F. -> ph ) -> F. ) -> ( ph -> F. ) ) ) |
|
| 2 | merco1 | |- ( ( ( ( ( ( F. -> ph ) -> ( ph -> F. ) ) -> ( ph -> F. ) ) -> ( F. -> ph ) ) -> ( ( ( F. -> ph ) -> F. ) -> ( ph -> F. ) ) ) -> ( ( ( ( ( F. -> ph ) -> F. ) -> ( ph -> F. ) ) -> ( F. -> ph ) ) -> ( ph -> ( F. -> ph ) ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( ( ( ( ( F. -> ph ) -> F. ) -> ( ph -> F. ) ) -> ( F. -> ph ) ) -> ( ph -> ( F. -> ph ) ) ) |
| 4 | merco1 | |- ( ( ( ( ( ( F. -> ph ) -> F. ) -> ( ph -> F. ) ) -> ( F. -> ph ) ) -> ( ph -> ( F. -> ph ) ) ) -> ( ( ( ph -> ( F. -> ph ) ) -> ( F. -> ph ) ) -> ( ph -> ( F. -> ph ) ) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( ( ( ph -> ( F. -> ph ) ) -> ( F. -> ph ) ) -> ( ph -> ( F. -> ph ) ) ) |
| 6 | merco1 | |- ( ( ( ( ( F. -> ph ) -> ( ph -> F. ) ) -> ( ( ph -> ( F. -> ph ) ) -> F. ) ) -> ( ph -> ( F. -> ph ) ) ) -> ( ( ( ph -> ( F. -> ph ) ) -> F. ) -> ( ph -> F. ) ) ) |
|
| 7 | merco1 | |- ( ( ( ( ( ( F. -> ph ) -> ( ph -> F. ) ) -> ( ( ph -> ( F. -> ph ) ) -> F. ) ) -> ( ph -> ( F. -> ph ) ) ) -> ( ( ( ph -> ( F. -> ph ) ) -> F. ) -> ( ph -> F. ) ) ) -> ( ( ( ( ( ph -> ( F. -> ph ) ) -> F. ) -> ( ph -> F. ) ) -> ( F. -> ph ) ) -> ( ( ph -> ( F. -> ph ) ) -> ( F. -> ph ) ) ) ) |
|
| 8 | 6 7 | ax-mp | |- ( ( ( ( ( ph -> ( F. -> ph ) ) -> F. ) -> ( ph -> F. ) ) -> ( F. -> ph ) ) -> ( ( ph -> ( F. -> ph ) ) -> ( F. -> ph ) ) ) |
| 9 | merco1 | |- ( ( ( ( ( ( ph -> ( F. -> ph ) ) -> F. ) -> ( ph -> F. ) ) -> ( F. -> ph ) ) -> ( ( ph -> ( F. -> ph ) ) -> ( F. -> ph ) ) ) -> ( ( ( ( ph -> ( F. -> ph ) ) -> ( F. -> ph ) ) -> ( ph -> ( F. -> ph ) ) ) -> ( ph -> ( ph -> ( F. -> ph ) ) ) ) ) |
|
| 10 | 8 9 | ax-mp | |- ( ( ( ( ph -> ( F. -> ph ) ) -> ( F. -> ph ) ) -> ( ph -> ( F. -> ph ) ) ) -> ( ph -> ( ph -> ( F. -> ph ) ) ) ) |
| 11 | 5 10 | ax-mp | |- ( ph -> ( ph -> ( F. -> ph ) ) ) |
| 12 | merco1 | |- ( ( ( ( ( F. -> ph ) -> ( ph -> F. ) ) -> ( ph -> F. ) ) -> ( F. -> ch ) ) -> ( ( ( F. -> ch ) -> F. ) -> ( ph -> F. ) ) ) |
|
| 13 | merco1 | |- ( ( ( ( ( ( F. -> ph ) -> ( ph -> F. ) ) -> ( ph -> F. ) ) -> ( F. -> ch ) ) -> ( ( ( F. -> ch ) -> F. ) -> ( ph -> F. ) ) ) -> ( ( ( ( ( F. -> ch ) -> F. ) -> ( ph -> F. ) ) -> ( F. -> ph ) ) -> ( ph -> ( F. -> ph ) ) ) ) |
|
| 14 | 12 13 | ax-mp | |- ( ( ( ( ( F. -> ch ) -> F. ) -> ( ph -> F. ) ) -> ( F. -> ph ) ) -> ( ph -> ( F. -> ph ) ) ) |
| 15 | merco1 | |- ( ( ( ( ( ( F. -> ch ) -> F. ) -> ( ph -> F. ) ) -> ( F. -> ph ) ) -> ( ph -> ( F. -> ph ) ) ) -> ( ( ( ph -> ( F. -> ph ) ) -> ( F. -> ch ) ) -> ( ph -> ( F. -> ch ) ) ) ) |
|
| 16 | 14 15 | ax-mp | |- ( ( ( ph -> ( F. -> ph ) ) -> ( F. -> ch ) ) -> ( ph -> ( F. -> ch ) ) ) |
| 17 | merco1 | |- ( ( ( ( ( F. -> ch ) -> ( ( ph -> ( ph -> ( F. -> ph ) ) ) -> F. ) ) -> ( ( ph -> ( F. -> ph ) ) -> F. ) ) -> ( ph -> ( F. -> ch ) ) ) -> ( ( ( ph -> ( F. -> ch ) ) -> F. ) -> ( ( ph -> ( ph -> ( F. -> ph ) ) ) -> F. ) ) ) |
|
| 18 | merco1 | |- ( ( ( ( ( ( F. -> ch ) -> ( ( ph -> ( ph -> ( F. -> ph ) ) ) -> F. ) ) -> ( ( ph -> ( F. -> ph ) ) -> F. ) ) -> ( ph -> ( F. -> ch ) ) ) -> ( ( ( ph -> ( F. -> ch ) ) -> F. ) -> ( ( ph -> ( ph -> ( F. -> ph ) ) ) -> F. ) ) ) -> ( ( ( ( ( ph -> ( F. -> ch ) ) -> F. ) -> ( ( ph -> ( ph -> ( F. -> ph ) ) ) -> F. ) ) -> ( F. -> ch ) ) -> ( ( ph -> ( F. -> ph ) ) -> ( F. -> ch ) ) ) ) |
|
| 19 | 17 18 | ax-mp | |- ( ( ( ( ( ph -> ( F. -> ch ) ) -> F. ) -> ( ( ph -> ( ph -> ( F. -> ph ) ) ) -> F. ) ) -> ( F. -> ch ) ) -> ( ( ph -> ( F. -> ph ) ) -> ( F. -> ch ) ) ) |
| 20 | merco1 | |- ( ( ( ( ( ( ph -> ( F. -> ch ) ) -> F. ) -> ( ( ph -> ( ph -> ( F. -> ph ) ) ) -> F. ) ) -> ( F. -> ch ) ) -> ( ( ph -> ( F. -> ph ) ) -> ( F. -> ch ) ) ) -> ( ( ( ( ph -> ( F. -> ph ) ) -> ( F. -> ch ) ) -> ( ph -> ( F. -> ch ) ) ) -> ( ( ph -> ( ph -> ( F. -> ph ) ) ) -> ( ph -> ( F. -> ch ) ) ) ) ) |
|
| 21 | 19 20 | ax-mp | |- ( ( ( ( ph -> ( F. -> ph ) ) -> ( F. -> ch ) ) -> ( ph -> ( F. -> ch ) ) ) -> ( ( ph -> ( ph -> ( F. -> ph ) ) ) -> ( ph -> ( F. -> ch ) ) ) ) |
| 22 | 16 21 | ax-mp | |- ( ( ph -> ( ph -> ( F. -> ph ) ) ) -> ( ph -> ( F. -> ch ) ) ) |
| 23 | 11 22 | ax-mp | |- ( ph -> ( F. -> ch ) ) |