This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted polynomial algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressmpl.s | |- S = ( I mPoly R ) |
|
| ressmpl.h | |- H = ( R |`s T ) |
||
| ressmpl.u | |- U = ( I mPoly H ) |
||
| ressmpl.b | |- B = ( Base ` U ) |
||
| ressmpl.1 | |- ( ph -> I e. V ) |
||
| ressmpl.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
||
| ressmpl.p | |- P = ( S |`s B ) |
||
| Assertion | ressmplmul | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( .r ` U ) Y ) = ( X ( .r ` P ) Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmpl.s | |- S = ( I mPoly R ) |
|
| 2 | ressmpl.h | |- H = ( R |`s T ) |
|
| 3 | ressmpl.u | |- U = ( I mPoly H ) |
|
| 4 | ressmpl.b | |- B = ( Base ` U ) |
|
| 5 | ressmpl.1 | |- ( ph -> I e. V ) |
|
| 6 | ressmpl.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
|
| 7 | ressmpl.p | |- P = ( S |`s B ) |
|
| 8 | eqid | |- ( I mPwSer H ) = ( I mPwSer H ) |
|
| 9 | eqid | |- ( Base ` ( I mPwSer H ) ) = ( Base ` ( I mPwSer H ) ) |
|
| 10 | 3 8 4 9 | mplbasss | |- B C_ ( Base ` ( I mPwSer H ) ) |
| 11 | 10 | sseli | |- ( X e. B -> X e. ( Base ` ( I mPwSer H ) ) ) |
| 12 | 10 | sseli | |- ( Y e. B -> Y e. ( Base ` ( I mPwSer H ) ) ) |
| 13 | 11 12 | anim12i | |- ( ( X e. B /\ Y e. B ) -> ( X e. ( Base ` ( I mPwSer H ) ) /\ Y e. ( Base ` ( I mPwSer H ) ) ) ) |
| 14 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 15 | eqid | |- ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) = ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) |
|
| 16 | 14 2 8 9 15 6 | resspsrmul | |- ( ( ph /\ ( X e. ( Base ` ( I mPwSer H ) ) /\ Y e. ( Base ` ( I mPwSer H ) ) ) ) -> ( X ( .r ` ( I mPwSer H ) ) Y ) = ( X ( .r ` ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) ) Y ) ) |
| 17 | 13 16 | sylan2 | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( .r ` ( I mPwSer H ) ) Y ) = ( X ( .r ` ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) ) Y ) ) |
| 18 | 4 | fvexi | |- B e. _V |
| 19 | 3 8 4 | mplval2 | |- U = ( ( I mPwSer H ) |`s B ) |
| 20 | eqid | |- ( .r ` ( I mPwSer H ) ) = ( .r ` ( I mPwSer H ) ) |
|
| 21 | 19 20 | ressmulr | |- ( B e. _V -> ( .r ` ( I mPwSer H ) ) = ( .r ` U ) ) |
| 22 | 18 21 | ax-mp | |- ( .r ` ( I mPwSer H ) ) = ( .r ` U ) |
| 23 | 22 | oveqi | |- ( X ( .r ` ( I mPwSer H ) ) Y ) = ( X ( .r ` U ) Y ) |
| 24 | fvex | |- ( Base ` S ) e. _V |
|
| 25 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 26 | 1 14 25 | mplval2 | |- S = ( ( I mPwSer R ) |`s ( Base ` S ) ) |
| 27 | eqid | |- ( .r ` ( I mPwSer R ) ) = ( .r ` ( I mPwSer R ) ) |
|
| 28 | 26 27 | ressmulr | |- ( ( Base ` S ) e. _V -> ( .r ` ( I mPwSer R ) ) = ( .r ` S ) ) |
| 29 | 24 28 | ax-mp | |- ( .r ` ( I mPwSer R ) ) = ( .r ` S ) |
| 30 | fvex | |- ( Base ` ( I mPwSer H ) ) e. _V |
|
| 31 | 15 27 | ressmulr | |- ( ( Base ` ( I mPwSer H ) ) e. _V -> ( .r ` ( I mPwSer R ) ) = ( .r ` ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) ) ) |
| 32 | 30 31 | ax-mp | |- ( .r ` ( I mPwSer R ) ) = ( .r ` ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) ) |
| 33 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 34 | 7 33 | ressmulr | |- ( B e. _V -> ( .r ` S ) = ( .r ` P ) ) |
| 35 | 18 34 | ax-mp | |- ( .r ` S ) = ( .r ` P ) |
| 36 | 29 32 35 | 3eqtr3i | |- ( .r ` ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) ) = ( .r ` P ) |
| 37 | 36 | oveqi | |- ( X ( .r ` ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) ) Y ) = ( X ( .r ` P ) Y ) |
| 38 | 17 23 37 | 3eqtr3g | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( .r ` U ) Y ) = ( X ( .r ` P ) Y ) ) |