This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resdifdi | |- ( A |` ( B \ C ) ) = ( ( A |` B ) \ ( A |` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | |- ( A |` ( B \ C ) ) = ( A i^i ( ( B \ C ) X. _V ) ) |
|
| 2 | difxp1 | |- ( ( B \ C ) X. _V ) = ( ( B X. _V ) \ ( C X. _V ) ) |
|
| 3 | 2 | ineq2i | |- ( A i^i ( ( B \ C ) X. _V ) ) = ( A i^i ( ( B X. _V ) \ ( C X. _V ) ) ) |
| 4 | indifdi | |- ( A i^i ( ( B X. _V ) \ ( C X. _V ) ) ) = ( ( A i^i ( B X. _V ) ) \ ( A i^i ( C X. _V ) ) ) |
|
| 5 | 1 3 4 | 3eqtri | |- ( A |` ( B \ C ) ) = ( ( A i^i ( B X. _V ) ) \ ( A i^i ( C X. _V ) ) ) |
| 6 | df-res | |- ( A |` B ) = ( A i^i ( B X. _V ) ) |
|
| 7 | df-res | |- ( A |` C ) = ( A i^i ( C X. _V ) ) |
|
| 8 | 6 7 | difeq12i | |- ( ( A |` B ) \ ( A |` C ) ) = ( ( A i^i ( B X. _V ) ) \ ( A i^i ( C X. _V ) ) ) |
| 9 | 5 8 | eqtr4i | |- ( A |` ( B \ C ) ) = ( ( A |` B ) \ ( A |` C ) ) |